Thermoflex® Tubing

Reinforced Thermoplastic Gathering, Disposal and Injection Lines

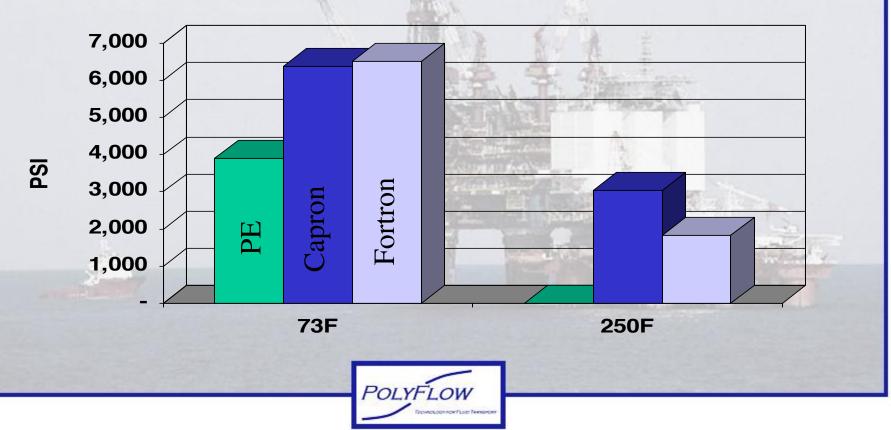
Offshore Rehabilitation of Existing Steel Pipelines

December 9, 2009

POLYFLOW

Background

- Existing Underwater Pipelines with Leaks are Expensive to replace or Repair
- Insertion of Thermoflex[®] Tubing is:
 - Low Cost
 - Requires Minimal Equipment
 - Long Term Corrosion Resistant Alternative
- Can Create a Double Walled System


Presentation Today

What is Thermoflex Tubing Case Studies Of Installations Next Steps

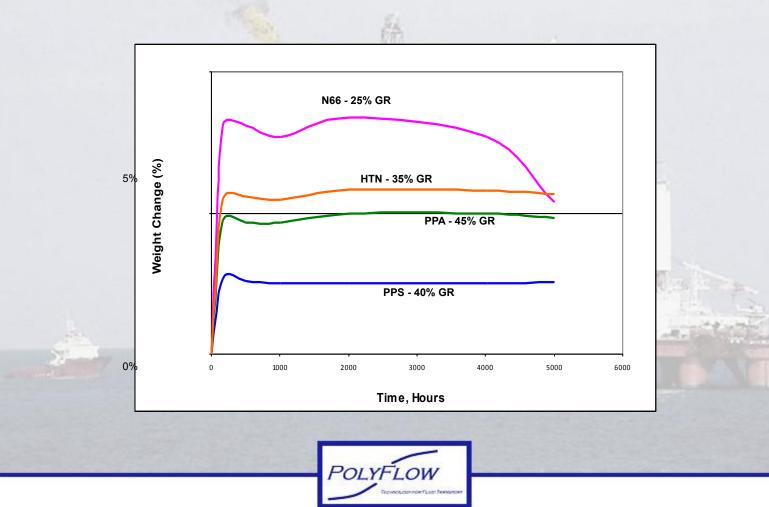
New Engineered Plastics Provide Higher Temperature Strength Not Available From Polyethylene (PE)

Tensile Strength (psi)

Liner Construction & Design

Inner Barrier

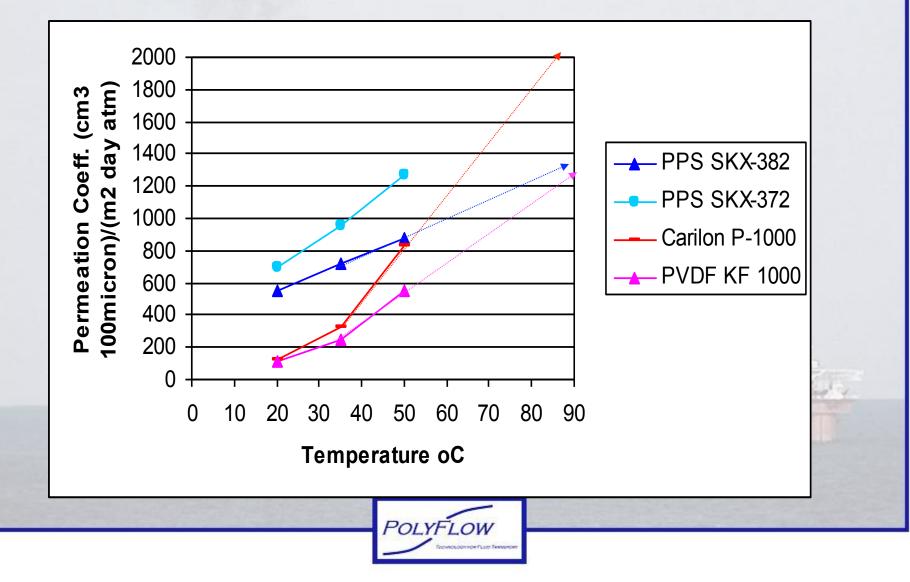
Outer Strength and


Abrasion Layer

- Multi-layer Design
 - Inner Layer for Corrosion Resistance, Low
 Permeation and Higher
 Temp Strength . . . Nylon and Fortron
 - Outer Layer for Higher Temperature Strength, Abrasion Resistance . . . Capron or PP
- Fully Bonded
- Applications to 250F

Long Term / Elevated Temp. Fuel Exposure Weight Change - Fuel CM15 (121°C)

10%


Polymer Estimated Life in Sour Environment (Years)

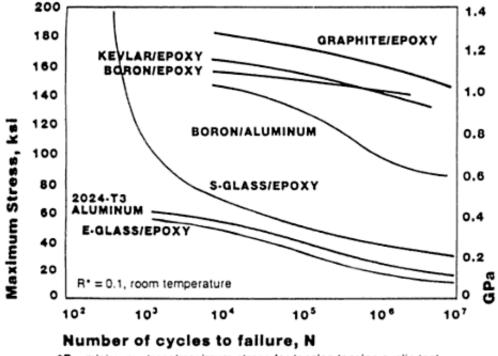
Temp (F)	Nylon	Fortron	HDPE
80C	1.2	>25	<.02
100C	.26	>25	NA
140C	.02	>25	NA

Source: Merl Report 2% H2S, 3% CO2, Balance methane in saturated brine water. Life defined as 50% reduction in yield strength

CO2 Permeability

Hydrogen permeation of Fortron (PPS) at 23 °C

Reinforced Tubing Design and Construction


- Multi-layer Design
 - Inner and Outer Barrier Layers
 - Center Layer Provides Higher Temperature Strength
 - Fiber reinforced with Kevlar for Strength, Tensile Load, and Burst
 - Tubing Strength P=(2*F*n)/D*L

Why Aramid Fibers vs. Glass

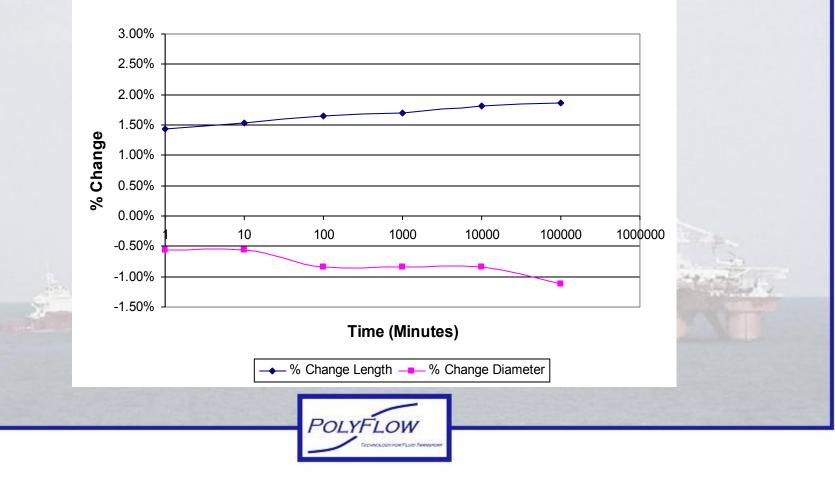

*R = minimum stress/maximum stress for tension-tension cyclic test.

Figure 6.4 S-N curve to show the fatigue behavior of unidirectional composites and aluminum. From Ref. 62.

Creep Performance

Ø1.75 Creep Test @ 5000 lb

Design Strength vs. Short Term Burst Strength

2 3/8" 500PSI Rated	Burst Strength	
Rated Braid Strength	500PSI	
Design Braid Strength	893PSI	
Short Term Burst Avg. Last 12 Months	2,297PSI	
POLYFLO		

Rehabilitation Process

- Pig Line to Assure Path for Thermoflex
- Use Pig to Pull Rope or Cable Through the Line
- Pull Thermoflex back Through Line with the Rope or Cable
- Connect to Tie in Points

Case Study for Crescent Petroleum

- Existing Flexible Steel Line Failure
- High Pressure Sour Gas with H2S (1,200PSI)
- 6,000ft (1.83Km) between Platforms
- Pulling 3.5" Thermoflex Through 8" Flex Steel

Pull the Rope Through the Line

- Rope or Cable
 - Rope Lighter Weight
 - Less Pigging Pressure
- Flooding the line Reduces Drag
- Pig for Pulling the Rope
- Rope Rated for 34,000lbs

Pulling Cone

- Attached to Thermoflex Termination Coupling
- 3" NPT Threads
- Holes In Cone to Allow for Water to Flood the Inside of Thermoflex Tubing

Prepping for the Pull

- Spools had 1,800ft length of Thermoflex
- Stage the Spools on the Platform

Pulling the Tubing

- Pull Force Never Exceeded 9,000lbs
- Pull one Length of Tubing, Stop, Attach Union Coupling, Pull Next Joint
- Pipe Pulled Through Flooded Steel Line

Pulling From the Riser

Pipe after 6,000ft Pull (1.83Km)

Union/Splice Assemblies

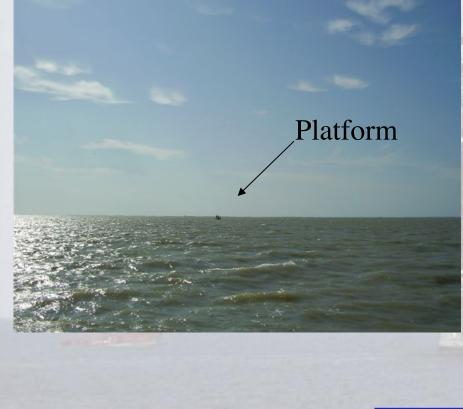
- Unions without Joints
- 250lbs (113kg) Machine
- 15 Minute Coupling Process

Terminations

 Flange Assembly to original Steel Assembly to to Seal off Annulus

Hydro Test at 1850PSI

- Pressure line in Stages
- Stretch in Pipe Requires "Topping Off" Prior to Test
- Ran for 24 hours


Results

- Total Project 8 days
- 90% less expensive than Replacing Steel
- Corrosion Resistant
- No Disposal of Old Lines

Pulling From Onshore to Offshore

- Gulf Of Mexico
- 14,400ft Pull
- Pigging Through Multiple Diameter Existing Pipe
- Oil /Brine Flow Line

Install 2 3/8" Thermoflex

Pre-pulling Issues

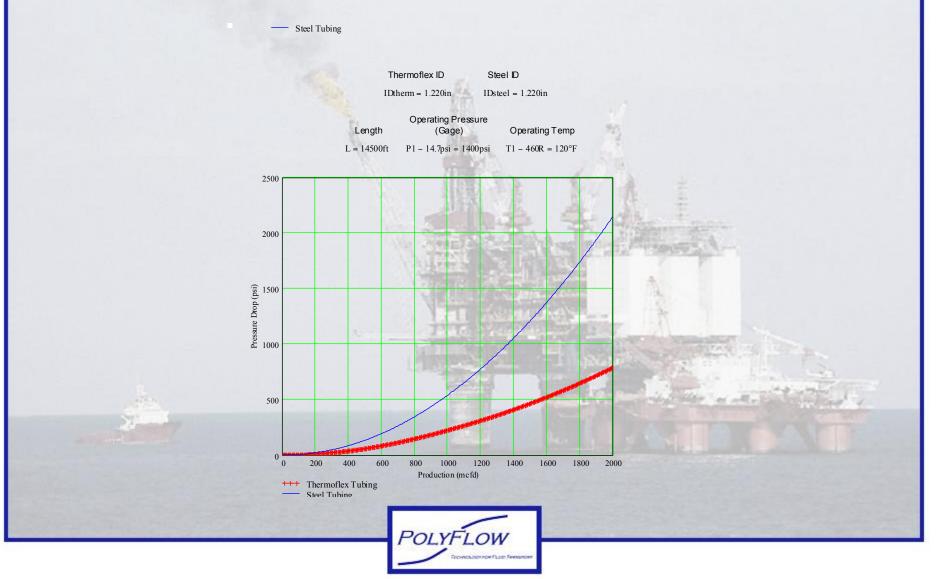
- 4", 6" 8" Line
- Riser Radii too Small
 - Lift Riser onto Barge
 - Terminate Pull
 Through Before Elbow
- Steel Riser but Could have used Thermoflex

Pulling from Land to Platform

- Staging Pipe on Land Easier
- Braided Rope vs. Cable because of Drag Weight
- Flooded Pipeline to minimize Drag
- 14,400ft . . . Under
 3,000lb Pull Force

Results

- 2 Weeks to Pig
- 1.5 days to Pull
- Essential to Make Sure a Pig Gets Through before Project Starts



Key Planning Steps

- Model the Project
 - Optimal Pipe Size/ Type
 - Pull Through Risers?
 - Pull Force
 Requirement
- Determine Space Requirements
- Safety / Testing Requirements

Modeling

